Let

$$P(x)=x^4+ax^3+bx^2+cx+d$$

where $a,b,c$ and $d$ are constants.

If $P(1)=10,P(2)=20$ and $P(3)=30$, then what is the value of $$frac{P(12)+P(-8)}{10}$$

I tried substituting $x=1,2,3$ in …

Let

$$P(x)=x^4+ax^3+bx^2+cx+d$$

where $a,b,c$ and $d$ are constants.

If $P(1)=10,P(2)=20$ and $P(3)=30$, then what is the value of $$frac{P(12)+P(-8)}{10}$$

I tried substituting $x=1,2,3$ in …